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This paper presents the Thomas-Fermi approach generalized to consider the particle correlations in many-
body systems with non-Coulomb interaction potentials. The key points of the generalization consist in using
integral formulation and extracting the radial distribution function. The latter has been found to obey the
integral equation which, in the classical limit, is reduced to the well-known equation of Bogoliubov. So, the
approach presented can be used to explore particle correlations in the quantum many-body systems with the
interparticle potentials not having the Fourier transform, for example, with a Lennard-Jones potential.
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It is known that the Thomas-Fermi approach@1# together
with its particular variant for the classical many-body sys-
tems, the Debye-Hueckel method@2#, is able to provide sat-
isfactory results while investigating the correlation phenom-
ena in the media with Coulomb interparticle potential. The
advantage of this approach consists in the extreme transpar-
ency of understanding the physics of the particle correla-
tions. But up to now the applications of the Thomas-Fermi
method have been limited to the situation of the Coulomb
type interactions. This paper presents the generalization of
the approach to consider the many-body systems with con-
stituents interacting by means of an arbitrary relevant poten-
tial.

To derive the generalization, let us take the system of
some particles uniformly distributed with densityn over a
region of volumeV. Let the potential of the particle interac-
tion beF(r ). Assume that a point object is placed into this
region and interacts with the surroundings via the same po-
tential. Further we shall treat the point of the object location
as the origin of the coordinates. We are interested in the
equilibrium structure produced around the origin point. This
structure is specified by the quantitynstr(r ;u,n) being the
density of the particles located in the vicinity of point
rW,r[urWu. Hereu denotes the system temperature. Below we
shall usenstr(r ) instead ofnstr(r ;u,n) to simplify the for-
mulas. According to the first ‘‘item’’ of the Thomas-Fermi
approach,nstr(r ) can be calculated with the following con-
dition:

m id„nstr~r !…1F~r !1U~r !5const ~;rW !, ~1!

wherem id(r) is the chemical potential of the ideal gas of the
considered particles at densityr, andU(r ) is the energy of
the interaction of the particle being at pointrW with the other
particles of the system. The quantity on the left side of~1!

can be named the total particle potential. To calculate
nstr(r ) with ~1!, the connection ofU(r ) with nstr(r ) should
be fixed. In the case of the systems with Coulomb interpar-
ticle potential, this is realized by employing the neutralizing
background and the Poisson equation@1,2#. But it is impos-
sible for the case of non-Coulomb interactions. However, we
can follow the other way based on the obvious integral rela-
tion

U~r !5E
V
F~ urW2yW u!nstr~y!dyW . ~2!

At point rW f ar which is far enough from the origin of the
coordinates, the total particle potential then takes the value

m id~n!1nE
V
F~ urW f ar2yW u!dyW , ~3!

if, of course, we hold to the reasonable assumption that

lim
r→`

F~r !50 .

Note, that we considerr f ar[urW f aru!R, whereR is the mini-
mal distance between the location point of the object and the
system boundary. Thus any boundary effects can be ignored
in our investigation. Equating~1! and ~3! we can find

m id~n!2m id„nstr~r !…5F~r !1E
V
„nstr~y!2n…F~ urW2yW u!dyW ,

~4!

where the used relation
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lim
V→`

*V@F~ urW f ar2yW u!2F~ urW2yW u!#dyW

*VF~ urW2yW u!dyW
5 0 ~5!

is fulfilled for a lot of the known potentials, in particular, for
the Coulomb potential as well as for the integrable ones. We
should remark here that the differential version of Eq.~4!
used for the electron many-body systems, has been derived
within the WKB approximation@3#. Hence, one can expect
that Thomas-Fermi approach is a semiclassical method
which takes into account quantal phenomena by quantizing
phase space into cells of volumehf wheref is the number of
degrees of freedom of the system, and then integrating over
momentum space to obtain the density in coordinate space.

Now we should realize the second ‘‘item‘‘ of the
Thomas-Fermi method. It implies that usingnstr(r ), we are
able to study the space correlations in the many-body system
made of the particles uniformly distributed with densityn.
The most important quantity calculated in the Thomas-Fermi
approach and related with the particle correlations, is usually
thought to be the screening radius. Of course, now we can
not exploit this quantity, for it is tightly connected with the
Coulomb interparticle potential and the neutralizing back-
ground. But there is one more correlation characteristic, no
less important than the screening radius, that may be evalu-
ated in the approach discussed. It is the radial distribution
functiong(r ;u,n) for which we have

g~r ;u,n!5
nstr~r ;u,n!

n
. ~6!

Using ~4! and ~6! we readily obtain the following integral
equation for the radial distribution function:

m id~n!2m id„ng~r !…5F~r !1nE
V
„g~y!21…F~ urW2yW u!dyW ,

~7!

whereg(r )[g(r ;u,n). To see to what extent this equation is
adequate, let us explore its classical limit. In this case we
have

m id~n!2m id„ng~r !…52u lng~r !. ~8!

Therefore, relation~7! can be rewritten as

2u lng~r !5F~r !1nE
V
„g~y!21…F~ urW2yW u!dyW . ~9!

Equation~9! makes it possible to generate the expansion in
powers ofn for g(r ;u,n)

g~r ;u,n!5g0~r ;u!1ng1~r ;u!1•••,

where

g0~r ;u!5expS 2
F~r !

u D ,
g1~r ;u!52

1

u
expS 2

F~r !

u D E
V
F~ urW2yW u!

3FexpS 2
F~y!

u D21GdyW .
As is seen,g0(r ;u) is in full agreement with the known
result of the calculations in the Gibbs canonical ensemble
@4#. But the expression forg1(r ;u) coincides with the true
value

expS 2
F~r !

u
D E

V
FexpS 2

F~ urW2yW u!
u

D 21G
3FexpS 2

F~y!

u
D 21GdyW

only at high temperatures. So, Eq.~9! gives the valid second
virial coefficient at low temperatures, and the correct second
and third ones at high temperatures. Note, that quite reason-
able integral equations forg(r ) derived in the superposition
approximation@5#, are in error beyond the third virial coef-
ficient @4,6#. Thus, the use of integral formulation for
Thomas-Fermi approach instead of the differential one and
the orientation to the radial distribution function, enable us to
generalize this method to study the case of the non-Coulomb
interactions. But the investigation goal has not been reached
yet.

Indeed, Eq.~7! gives the possibility to consider particle
correlations in, for example, nuclear matter, where the
nucleon-nucleon potential is of Yukawa type exp(2y)/y, or
in the electron gas. But it is not the case for the potentials
which are not integrable due to their behavior at small sepa-
rations between interacting particles. For instance, if we take
potential 1/rm (m.2) then the integrals in expressions~7!
and~9! will not exist. This obstacle appears because particle
correlations have been neglected while calculatingU(r ). In
particular, in above mentioned reasonings, quantityU(r f ar)
is given with the expression

U~r f ar!5nE
V
F~ urW f ar2yW u!dyW

that corresponds to the particle interactions taken in the Har-
tree approximation. The latter is well known not to take into
account any correlations. To derive a more correct relation
for quantity U(r f ar), note, that it is nothing else but the
interaction energy of a particle with the other particles uni-
formly distributed around with densityn. Keeping this in
mind, we estimateU(r f ar) @7,8# as

U~r f ar!5nE
V
g~ urW f ar2yW u!F~ urW f ar2yW u!dyW . ~10!

But now the problem arises howU(r ) can be specified, for
we have fixed only its limit value atrW f ar . A reasonable way
to do this is to treat quantityg(r )F(r ) as the effective
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interaction potential which should be substituted forF(r )
in all the integrals in expressions~2!–~5!. In this case we
have

U~r !5E
V
g~ urW2yW u!F~ urW2yW u!nstr~y!dyW . ~11!

Further,~1! and ~11! together with~6! yield the equation

m id~n!2m id„ng~r !…5F~r !1nE
V
„g~y!21…g~ urW2yW u!

3F~ urW2yW u!dyW . ~12!

It is interesting to compare~12! with the well-known integral
equations for the radial distribution function of the classical
simple liquids. In such a situation expression~12! can be
rewritten as

2u lng~r !5F~r !1nE
V
„g~y!21…g~ urW2yW u!

3F~ urW2yW u!dyW . ~13!

This is very similar to the equation

2u lng~r !5F~r !1nE
V
„g~y!21…F̃~ urW2yW u!dyW ~14!

derived in the superposition approximation by Bogoliubov
@4#. Here

F̃~ urW2yW u![g~ urW2yW u!F~ urW2yW u!1E
urW2yW u

`

F~ t !
dg

dt
dt.

FunctionF(t) dg/dt is oscillating around zero, so its inte-
gral, apparently, does not make an essential contribution into

the expression forF̃(urW2yW u). So, Eqs.~13! and~14! have to
yield similar qualitative results. According to~14!, we can
expect thatF̃ ~r! is more accurate an estimation of the effec-
tive interaction potential thang(r )F(r ). The replacement of
g(r )F(r ) by F̃(r ) in expression~12!, results in the follow-
ing integral equation:

m id~n!2m id„ng~r !…5F~r !1nE
V
„g~y!21…F̃~ urW2yW u!dyW ,

~15!

which gives the Bogoliubov equation~14! in the classical
limit. Thus, we have now derived integral Eqs.~13! and~15!
that allow us to explore particle correlations even in the
many-body systems with the interaction potentials behaving
at small distances as 1/rm (m.2).

In conclusion, let us take notice of the most important
points of the paper once more. The article presents the gen-
eralization of the Thomas-Fermi method to investigate par-
ticle correlations in the many-body systems with non-
Coulomb interactions of their constituents. The essentials of
the generalization consist in using integral formulation and
operating with the radial distribution function. The paper re-
sults in the integral equations forg(r ) which correspond to
the different ways of considering particle interactions. The
most interesting of them,~15!, is reduced to Bogoliubov
equation~14! in the classical limit and can be used to inves-
tigate particle correlations for the quantum liquids with the
interaction potential not having the Fourier transform, for
example, with Lennard-Jones potential. Of course, it is also
necessary to explore other possible evaluations ofU(r ) and
corresponding integral equations for the radial distribution
function. This investigation will be presented in a forthcom-
ing paper.
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