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This paper presents the Thomas-Fermi approach generalized to consider the particle correlations in many-
body systems with non-Coulomb interaction potentials. The key points of the generalization consist in using
integral formulation and extracting the radial distribution function. The latter has been found to obey the
integral equation which, in the classical limit, is reduced to the well-known equation of Bogoliubov. So, the
approach presented can be used to explore particle correlations in the quantum many-body systems with the
interparticle potentials not having the Fourier transform, for example, with a Lennard-Jones potential.
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It is known that the Thomas-Fermi approddi together can be named the total particle potential. To calculate
with its particular variant for the classical many-body sys-ng.,(r) with (1), the connection obJ(r) with ng,(r) should
tems, the Debye-Hueckel methf2l, is able to provide sat- be fixed. In the case of the systems with Coulomb interpar-
isfactory results while investigating the correlation phenom-ticle potential, this is realized by employing the neutralizing
ena in the media with Coulomb interparticle potential. Thebackground and the Poisson equatj@?]. But it is impos-
advantage of this approach consists in the extreme transpagible for the case of non-Coulomb interactions. However, we
ency of understanding the physics of the particle correlacan follow the other way based on the obvious integral rela-
tions. But up to now the applications of the Thomas-Fermition
method have been limited to the situation of the Coulomb
type interactions. This paper presents the generalization of . .
the approach to consider the many-body systems with con- u(r)= fv(p(|r_y|)nstr(y)dy- 2
stituents interacting by means of an arbitrary relevant poten-
tial. R

To derive the generalization, let us take the system ofAt point r¢;, which is far enough from the origin of the
some partides uniform|y distributed with dens'myover a Coordinates, the total partiCIe pOtential then takes the value
region of volumeV. Let the potential of the particle interac-
tion be®(r). Assume that a point object is placed into this - S
region and interacts with the surroundings via the same po- “‘d(anﬁ,@('rfa’_yl)dy‘ ®)
tential. Further we shall treat the point of the object location
as the origin of the coordinates. We are interested in the: o course, we hold to the reasonable assumption that
equilibrium structure produced around the origin point. This
structure is specified by the quantity,(r;6,n) being the
density of the particles located in the vicinity of point

r,r=|r|. Here @ denotes the system temperature. Below we
shall useng,(r) instead ofng,(r;#,n) to simplify the for-
mulas. According to the first “item” of the Thomas-Fermi
approachng;(r) can be calculated with the following con-
dition:

Iim®(r)=0.

r—oo

Note, that we consider;, =|r,|<R, whereR is the mini-

mal distance between the location point of the object and the
system boundary. Thus any boundary effects can be ignored
in our investigation. Equatin¢l) and (3) we can find

pig(Nee(1))+®(r)+U(r)=const (Vr), (1)
wherepuq(p) is the chemical potential of the ideal gas of the #id(N) = ia(ere(1)) = P(r) + J’V(nstr(y)—n)<b(|r—y|)dy,

considered particles at densjpy andU(r) is the energy of (4

the interaction of the particle being at poiﬁtNith the other
particles of the system. The quantity on the left sidgX)f where the used relation
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O(|ria—y)—®(Ir—y|)1dy D(r)
im PP YD - @ —ypldy_ o o go(r;g):exp(_ ! )
Ve Jv@([r—y)dy
_ 1 d(r) - -
is fulfilled for a lot of the known potentials, in particular, for 9:(r;0)=—gexg — —p— qu)(“_yl)

the Coulomb potential as well as for the integrable ones. We

should remark here that the differential version of E4). D(y)

used for the electron many-body systems, has been derived X exp( - T) —1id
within the WKB approximatior{ 3]. Hence, one can expect

that Thomas-Fermi approach is a semiclassical methogds is seen,go(r;6) is in full agreement with the known
which takes into account quantal phenomena by quantizingesult of the calculations in the Gibbs canonical ensemble

phase space into cells of volurhéwheref is the number of  [4]. But the expression fog,(r; ) coincides with the true
degrees of freedom of the system, and then integrating overajue

momentum space to obtain the density in coordinate space.
Now we should realize the second “item" of the d(r) O(|r-y))
exp — —— f exp ———| -1
\%

>

y.

Thomas-Fermi method. It implies that using,(r), we are 9 9
able to study the space correlations in the many-body system

made of the particles uniformly distributed with density p( d)(y)) } R

The most important quantity calculated in the Thomas-Fermi X|exp ———|—1|dy

approach and related with the particle correlations, is usually 4

thought to be the screening radius. Of course, now we CaBnly at high temperatures. So, H§) gives the valid second
not exploit this quantity, for it is tightly connected with the virial coefficient at low temperatures, and the correct second

L 200 S50k and i cnes o Hh empraures. oo, 1l quts esion
less important than the screening radius, that may be evalt?—ble integral equations fag(r) derived in the superposition

ated in the approach discussed. It is the radial distributioﬁsig'ﬁxgagonﬁ]asaridz eurrscgr lz;y?nr;g t:]ae; tfr(')' :?nx;gﬁggo?;}
functiong(r; 6,n) for which we have T ! g

Thomas-Fermi approach instead of the differential one and
the orientation to the radial distribution function, enable us to

Nt (r;0,N) generalize this method to study the case of the non-Coulomb
g(r;6.n)= n : (6) interactions. But the investigation goal has not been reached
yet.

Indeed, Eq.(7) gives the possibility to consider particle
Using (4) and (6) we readily obtain the following integral correlations in, for example, nuclear matter, where the
equation f0r the radial diStribution fUnCtion: nuc'eon_nuc'eon potentia' is Of Yukawa type e*mly, or
in the electron gas. But it is not the case for the potentials
oL which are not integrable due to their behavior at small sepa-
Mid(n)—md(ng(r))=<D(r)+nf (9(y)—1)d(|r—y|)dy, rations between interacting particles. For instance, if we take
v potential 1f™ (m>2) then the integrals in expressio(id
@) and(9) will not exist. This obstacle appears because particle
correlations have been neglected while calculatig). In
whereg(r)=g(r; 6,n). To see to what extent this equation is particular, in above mentioned reasonings, quantify;,,)
adequate, let us explore its classical limit. In this case was given with the expression
have

U(rfar>=nf (| 10— Y)Y
#ig(N) — mig(ng(r))=—6 Ing(r). (8) v

that corresponds to the particle interactions taken in the Har-
Therefore, relatior{7) can be rewritten as tree approximation. The latter is well known not to take into
account any correlations. To derive a more correct relation
for quantity U(r;,,), note, that it is nothing else but the
-0 Ing(r):(b(r)—i—nf (g(y)—1)®(Jr—y))dy. (9) interaction energy of a particle with the other particles uni-
v formly distributed around with density. Keeping this in
mind, we estimate&J(r;,,) [7,8] as

Equation(9) makes it possible to generate the expansion in
powers ofn for g(r;a,n) U(rfar):nf g(|Ffar_§|)(D(|Ffar_9|)d§- (10)
\%

g(r;6,n)=go(r;0)+ngy(r;0)+---, But now the problem arises ho(r) can be specified, for

we have fixed only its limit value anar. A reasonable way
where to do this is to treat quantityg(r)®(r) as the effective
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@nteraction. potentia[ which shpuld be substitl_Jted f(r) the expression fOE)(|F_ y|). So, Egs(13) and(14) have to
in all the integrals in expression®)—(5). In this case we yjeld similar qualitative results. According td4), we can
have expect thatb (r) is more accurate an estimation of the effec-
tive interaction potential thag(r)®(r). The replacement of
U(r)zJ’ g(|r—=yD@(|r —y)ng(y)dy. (11)  g(r)®(r) by ®(r) in expressior(12), results in the follow-
v ing integral equation;

Further,(1) and (11) together with(6) yield the equation

Mid<n>—md(ng<r>>=q><r>+nfv<g<y>—1)213<|F—9|>d9,

uid<n>—md(ng<r>)=q><r>+nfv(g(w—1)g<|F—§|> v
15

X D(|r—y|)dy. (12)
which gives the Bogoliubov equatiofi4) in the classical

Itis in.teresting to comparng). with the welll-known integra] limit. Thus, we have now derived integral Eq$3) and(15)
equations for the radial distribution function of the classicali,at allow us to explore particle correlations even in the

simple liquids. In such a situation expressit?) can be  5ny hody systems with the interaction potentials behaving

rewritten as at small distances asrf) (m>2).
o In conclusion, let us take notice of the most important
-0 Ing(r)=¢>(r)+nj Q(y)—Da(r—y) points of the paper once more. The article presents the gen-
v

eralization of the Thomas-Fermi method to investigate par-
ticle correlations in the many-body systems with non-
Coulomb interactions of their constituents. The essentials of
the generalization consist in using integral formulation and
operating with the radial distribution function. The paper re-
- 0 .. sults in the integral equations fg(r) which correspond to
—0 Ing(r)=¢>(r)+nfv(g(y)—l)dJ(Ir—yI)dy (14 the different ways of considering particle interactions. The
most interesting of them(15), is reduced to Bogoliubov
derived in the superposition approximation by Bogoliubove€quation(14) in the classical limit and can be used to inves-
[4]. Here tigate particle correlations for the quantum liquids with the
interaction potential not having the Fourier transform, for
dg example, with Lennard-Jones potential. Of course, it is also
glq’(t)adt- necessary to explore other possible evaluationd (@f) and
corresponding integral equations for the radial distribution
Function®(t) dg/dt is oscillating around zero, so its inte- function. This investigation will be presented in a forthcom-
gral, apparently, does not make an essential contribution inting paper.

X O (|r—y|)dy. (13

This is very similar to the equation

oo

F(7-y) =gl -yha(F-y) + |

Ir=
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